SUNSULUUUU

- Lessential part of modeling
- __lots of ways to do this
- Trelated to PDFs, need to know what range of values can be expected
- Louides interpretation and future work

99Tc Pathway/Parameter

The Most Important Pathways Contributing to the 1291 Dose to Man

Modelmobiscoson

- Lespecially for sub-models
- _faster to compute
- _simpler to interpret and explain
- Lalowsuse of researchevel models in assessment applications

 $(DISP)_{TG} = (4.87 \cdot A_T^{1/8} - 3.56)/UWGH$

Specific activity models

• a radionuclide and a stable nuclide of the same element, if in contact and of the same chemical species, will mix and exchange until there is the same radionuclide/stable-nuclide ratio throughout the system.

Terminology

- specific activity
- isotope ratio
- isotopic equilibrium
- mixing pool
- isotope fractionation

nings to remember

- isotopic exchange will occur even when there is no mass exchange, everagainst a chemical gradient
 - a little difficult to measure
 - convenient if you can assume that
 isotopic equilibrium has occurred and
 isotopic fractionation is minor

Examples of use

population dose models

• geosphere dose limit model

simple alternative models

Observed specific activities (Bq/g C) in a Canadian Shield lake (from Sheppard et al. 1994a).

SURFACE WATER COMPARTMENT FJ Outflow Domestic Valer Irrigation Runoff Le profilor

The mass balance equation for nuclide i in the lake water is

$$\frac{dM_{w,i}(t)}{dt} = X_{1,i}(t) + \lambda_{i.1} \cdot M_{w,i-1}(t) - A_d \cdot R \cdot M_{w,i}(t)/V_1$$

$$- \alpha_i \cdot M_{w,i}(t) - \lambda_i \cdot M_{w,i}(t) - \epsilon_i \cdot M_{w,i}(t)$$
where
$$M_{w,i}(t) = \text{total amount of nuclide } i \text{ in lake water (mol) at time } t \text{ (a),}$$

$$X_{1,i}(t) = \text{total annual input of nuclide } i \text{ to the lake (mol·a-1) at time } t \text{ (a),}$$

$$A_d = \text{terrestrial catchment area of the lake (m^2),}$$

$$R = \text{runoff in the lake's terrestrial catchment (m·a-1),}$$

$$\alpha_i = \text{rate constant describing the net rate of transfer of nuclide } i \text{ from water to sediment (a-1),}$$

$$\lambda_i, \lambda_{i-1} = \text{radioactive decay constants for nuclides } i \text{ and } i - 1 \text{ (precursor to i) (a-1),}$$

$$\epsilon_i = \text{rate constant describing the rate' of gaseous evasion of nuclide } i \text{ to the atmosphere (a-1), and}$$

$$V_i = \text{volume of the lake (m^3).}$$

FIGURE 3: Generic Lake Typical of Canadian Shield Lakes.

A_d = catchment area,

= lake area,

 $C_{w,i}$ = concentration of nuclide i in water, $C_{s,i}$ = concentration of nuclide i in sediment,

 α_{i} = nuclide i transfer rate from water to sediment,

= gaseous evasion of nuclide i, and

= lake mean depth.

LAKE COMPARTMENTS

COG L&ILW Disposal Program Workshop, Chalk River

April 18 - 19, 1995

L&ILW CRL LAKE MODEL

irrigation/deposition (constant)

CSA

regulatory model She dep only

irrigation/c

PROCESSES AND PATHWAYS CONTRIBUTING TO SOIL CONCENTRATIONS IN THE VARIOUS FIELDS

	Nuclide Transport Processes				Contributing Pathways		ys
Soil and Fields			Cropping Losses	Decay/ Ingrowth	Groundwater Contamination	Irrigation	Atmospheric Deposition
Deep Soils (≥ 0.5 m deep)	 	<u></u>					
Garden	Yes	Yes	Yes	Yes	Yes+	In 90% of runs	Yes
Forage field	Yes	Yes	Yes	Yes	Yes	In 2% of runs	Yes
Woodlot	les	Yes	Yes	Yes	Yes+	No	Yes
Peat bog*	Yes	Yes	No	Yes	Yes	No	Yes
Shallow Soils (< 0.5 m de	ep)						
Garden	Yes**	No	No	Yes	Yes	No	Yes
Forage field	Yes**	No	No	Yes	Yes+	No	Yes
Woodlot	Yes**	No	No	Yes	Yes+	No	Yes
Peat bog*	Yes**	No	No	Yes	Yes+	No	Yes
Sediment as Soil	Yes	No	No	No	Yes	No	No

^{*} The peat bog is modelled only if the soil type is organic and the critical group burns peat for energy. ** Uniform mixing in a single layer.

⁺ If area of terrestrial discharge is sufficiently large.

PROCESSES AND PATHWAYS CONTRIBUTING TO SOIL CONCENTRATIONS IN THE VARIOUS FIELDS

	Nuclid	Nuclide Transport Processes				Contributing Pathways		
Soil and Fields	Advection with Water			Decay/ Ingrowth	Groundwater Contamination	Irrigation	Atmospheric Deposition	
Deep Soils (≥ 0.5 m deep)		<u> </u>						
Garden	Yes	Yes	Yes	Yes	Yes+	In 90% of runs	Yes	
Forage field	Yes	Yes	Yes	Yes	Yes+	In 2% of runs	Yes	
Woodlot	Yes	ľes	Yes	Yes	Yes+	No	Yes	
Peat bog*	Yes	Yes	No	Yes	Yes	No	Yes	
Shallow Soils (< 0.5 m de	ep)							
Garden	Yes**	No	No	Yes	Yes	No	Yes	
Forage field	Yes**	No	No	Yes	Yes+	No	Yes	
Woodlot	Yes**	No	No	Yes	Yes*	No	Yes	
Peat bog*	Yes**	No	No	Yes	Yes+	No	Yes	
Sediment as Soil	Yes	No	No	No	Yes	, No	No	

^{*} The peat bog is modelled only if the soil type is organic and the critical group burns peat for energy.

** Uniform mixing in a single layer.

⁺ If area of terrestrial discharge is sufficiently large.

PATHWAYS CONTRIBUTING TO OUTDOOR AIR CONCENTRATIONS

Pathyan		All			
Pathvay	1 4 C	⁷⁹ Se	1297	2 2 2 Rn	Other Nuclides
Terrestrial Particles	X	X	Х	Х	Х
Aquatíc Particles	Х	Х	X	Х	Х
Terrestrial Gases	X	X	Х	X	
Aquatic Gases	х		X	х	
Agricultural Fires	X	Х	x	Х	х
Energy Fires	X	X	X	X	Х
Land-Clearing Fires	X	x	x	х	X

pathways leading to internal exposure

WNKE

FOOD-OWNERS SEELINGS

Definition of the critical group

contemporary, futuristic, ancient?

technology, detection of hazard, health care
diet

self sufficient?

what fraction of resources are local?

'standard' man or diverse?

always present?

95-050.05

TOTAL DOSES AT 10,000 YEARS FOR 11 LIFESTYLE SCENARIOS

	Scenario	Dose (Sv⋅a ⁻¹)	
1.	Vegetarian	1.0 x 10 ⁻¹⁷	
2.	Vegetarian with dairy	8.0×10^{-18}	
3.	Vegetarian with diary and eggs	8.1×10^{-18}	
4.	Meat	6.6 x 10 ⁻²⁰	
5.	Poultry/eggs	8.7×10^{-20}	
6.	Dairy	7.0×10^{-20}	
7.	Fish	4.8 x 10 ⁻²⁰	
8.	Aboriginal/northern mixed	6.4×10^{-19}	
9.	Abcriginal/northern meat	6.9 x 10 ⁻¹⁸	
10.	Aboriginal/northern bird	7.3×10^{-18}	
11.	Aboriginal/northern fish	5.9×10^{-18}	
	Median case simulation	2.9 x 10 ⁻¹⁸	

Note:

Scenario doses are based on well or lake water with or without irrigation, which ever gave the highest value.

95-050.06